The generator matrix

 1  0  0  0  1  1  1  3  1  1  1  1  1 X+3 X+3  1  1  6  1  1  1  1  1  1 X+6  0  1  1  1  1 X+6  1  1  1  1 X+6  X  1  3  1  3  1  1  1  1 2X+3  1  1  1 X+3  1 X+3  1 X+3  1 X+6  1  1  1  1  1  1  1  1  X  1 2X+3  1  1  1  1  1  1  1  1  1  1  1
 0  1  0  0  3  1  7  1  X X+6 2X+8 2X+5 X+7  1 2X X+2 X+1  1  5 2X  2 2X+1 X+7 2X+3  1  1 2X X+2  0 X+5  1  4 2X+6 2X+8 2X+4  1 2X+6  5  1 X+6  1 X+1  7  4  5  1 2X+5 X+5  0  6  5 X+6  3  1  X  1 2X+3 2X  4 X+1 2X+3 2X+1  7  7  3  X  1 2X+4  3  1  0 2X+5 2X+8 2X+8 X+1  6 2X+5  6
 0  0  1  0 2X+4 2X+1 X+2 2X+4 X+1 X+5  6  4 X+7 X+1  1  2 2X X+2  X X+2 2X+7  5  1 X+1  7 2X+8  2  0 X+6 X+8  6 2X+6 2X+6 X+8 X+3  2  1 2X+7 X+2  3 X+6  7  8 2X+5  3 2X  5 X+2 X+5 X+3  7  1  3 X+5 2X+7 2X+4  2  1 X+6 X+3  0 2X+1  X  6  1  2 2X+7 2X+3 X+4  1 X+3  1 2X+3 X+3  4 X+2 2X+2  0
 0  0  0  1 2X+2  6 2X+8 2X+8  7  X  1 X+6  5 X+6 X+2 X+5  3 2X+4  8 2X+1 2X+4 X+7  7  0  7 2X  2 X+3 2X+1  0 2X+2  8 X+8 2X+7  7  5 X+4 X+8 X+1 2X+7  4 2X+4 X+3 2X+5  1 2X+7 2X+5 X+3  1  1 X+1 X+2  2  5 2X+5 2X+3 2X+5 2X+4 X+6 X+1 2X+1  2  5 X+2 2X+8  6  3 X+6  6 2X+3  X 2X+2  3 X+4 2X+2 2X+2  2 X+3

generates a code of length 78 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 144.

Homogenous weight enumerator: w(x)=1x^0+734x^144+1698x^145+4440x^146+6764x^147+9642x^148+14166x^149+18438x^150+22356x^151+30954x^152+33574x^153+39606x^154+50430x^155+46784x^156+49836x^157+51360x^158+41858x^159+35082x^160+28650x^161+19608x^162+10884x^163+7626x^164+3618x^165+1818x^166+834x^167+334x^168+72x^169+66x^170+62x^171+48x^172+36x^173+26x^174+30x^175+6x^176

The gray image is a code over GF(3) with n=702, k=12 and d=432.
This code was found by Heurico 1.16 in 557 seconds.